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ABSTRACT 
In this study, we employed the Artificial Neural Network-Group COSMO sigma profile method to estimate critical 

pressure, critical temperature, enthalpy of fusion, and melting temperature of pure chemical compounds. Utilizing 
a comprehensive database containing 1400 data points of various pure compounds, we developed a robust 

predictive model. The method demonstrated high accuracy, yielding root mean square errors of 5 bar for critical 

pressure, 25 K for critical temperature, 2030 kJ/mol for enthalpy of fusion, and 23 K for melting temperature. 
These results underscore the potential of the Artificial Neural Network-Group COSMO sigma profile method as a 

reliable tool for predicting critical thermodynamic properties, contributing valuable insights to the field of chemical 
engineering and material science. 

 

 
RESUMEN 

En este estudio, se aplicó el método de Red Neuronal Artificial-Perfil sigma de Grupo COSMO para estimar la 
presión crítica, la temperatura crítica, la entalpía de fusión y la temperatura de fusión de compuestos químicos 

puros. Se investigó una base de datos con 1400 puntos de compuestos puros para proponer el modelo predictivo. 

Los resultados proporcionaron errores cuadráticos medios de 5 bar, 25 K, 5 kJ/mol y 32 K, para las propiedades 
estimadas de presión crítica, temperatura crítica, entalpía de fusión y temperatura de fusión, respectivamente. 
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INTRODUCTION 

 

Thermodynamic models are essential tools for accurately describing the aqueous solubility of solutes at high 
pressure and temperature, utilizing critical pressure (Pc), critical temperature (Tc), molar enthalpy of fusion (ΔHf), 

and melting point (Tm) as key parameters. However, the experimental data for these properties are often 
unavailable for numerous chemical compounds, necessitating the development of predictive models. 

 
Group contribution (GC) methods are commonly employed to estimate critical properties and physicochemical 

properties. These methods assume that the properties of a molecule are derived from the contributions of its 

constituent elements. The intermolecular forces that determine the constants of interest are largely dependent on 
the bonds between atoms. Consequently, each molecule is treated as an assemblage of fundamental groups, with 

each group contributing to the property of interest, which is then calculated by summing the contributions of each 
group. 

 

Numerous GC methods have been developed to predict critical temperature and pressure, including those by 
Kudchadker and Zwolinski (1966), Lydersen (1955), Joback and Reid (1987), Marrero and Gani (2001), Thodos 

(1955), Ambrose and Ghiasse (1987), and Wilson and Jasperson (1999). 
 

Marrero and Gani (2001), advanced several GC methods for predicting ΔHf and Tm. Their third-order GC method, 
which exhibited the best results for 700 compounds, yielded a standard deviation, average absolute error, and 

average absolute relative deviation of 3.7, 2.2 kJ/mol, and 15.7%, respectively. The quantitative structure-

property relationship (QSPR) method has also been utilized to predict ΔHf, though it is limited to specific chemical 
families (Dyekjaer & Jonsdottir, 2003; Puri et al., 2003; Goodarzi et al., 2010). Gharagheizi and Salehi (2011), 

introduced an artificial neural network group contribution (ANN-GC) method to estimate ΔHf with training and test 
set deviations of less than 3%. 

 

Although melting temperature can be measured accurately, its prediction has been challenging. While reasonably 
accurate models have been developed for small subgroups of compounds, relatively few models exist for predicting 

the Tm of biomolecules or molecules used in pharmaceutical applications (Katritzky et al., 2001). Bergström et al. 
(2003), predicted the melting temperatures of a set of 92 drugs, trained on 185 compounds, using electron 

topology descriptors, reporting a root mean square error (RMSE) of 49.8 K and a squared correlation coefficient 

(R²) value of 0.5. Karthikeyan et al. (2005), used the Bergström data set as a validation set for their ANN model, 
trained on a selection of compounds from the Molecular Diversity Preservation International (MDPI) database. For 

the selection of molecules from MDPI not used in the ANN training, Karthikeyan et al. (2005) reported an RMSE 
of 50.4 K with an R² value of 0.64. Hughes et al. (2008), employed a support vector machine model with 2D and 

3D descriptors to predict the melting temperature, achieving an RMSE of 53 K for a database of 287 compounds. 
 

An important disadvantage of GC methods is that they cannot be applied to compounds containing groups that 

are not included in the training set. In addition, these methods lack consideration of the interactions between the 
different groups present in a molecule and the spatial arrangement of the various groups. Alternative approaches 

such as the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), proposed by Lin and 
Sandler (2002), have gained attention. The COSMO-SAC method uses a sigma profile to represent the charge 

density distribution within a molecule, providing a more comprehensive understanding of molecular interactions. 

 
Another promising approach is the use of Artificial Neural Networks (ANNs) for predicting thermodynamic 

properties. ANNs can detect complex relationships between variables and offer robust predictions for a wide range 
of compounds. However, ANNs are often criticized for their "black-box" nature and the risk of over-fitting, which 

requires careful training and validation. 
 

In this study, we aim to develop an ANN model to predict Pc, Tc, ΔHf, and Tm for 1400 chemical compounds. By 

integrating the sigma profile from the COSMO-SAC model, molecular volume, and molecular weight, our ANN 
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model seeks to provide accurate and reliable predictions. This approach addresses the limitations of traditional GC 

methods and leverages the strengths of ANNs in handling complex data. 

 
The research focuses on bridging the gap between traditional GC methods and modern computational techniques, 

offering a novel solution for predicting properties. The outcomes of this study have significant implications for 
chemical engineering, providing a valuable tool for researchers and engineers in various industries. 

 
METHODOLOGY 

 
The ANN was meticulously designed and optimized to incorporate the sigma profile of COSMO-SAC, molecular 
weight, molecular volume, and the number of chemical bonds. A comprehensive database containing 1400 data 

points for critical temperature (Tc), enthalpy of fusion (∆Hf), and melting temperature (Tm) of pure compounds 
from various chemical families was utilized to develop the predictive model. The COSMO-SAC sigma profile for all 

the chemical compounds was employed in the analysis. The dataset included Tc values ranging from 33 to 1290 

K, ∆Hf values ranging from 117 to 99,200 kJ/mol, and Tm values ranging from 13.8 to 870.2 K. The development 
and application of molecular descriptors based on the COSMO-SAC sigma profile are elaborated in the following 

sections. 
 

Artificial neural network (ANN) 
 

A computational neural network comprises simple processing units known as neurons. The effectiveness of these 

neurons is determined by the weights assigned to them. Initially, the inputs are multiplied by their respective 
connection weights, summed, and then processed through a transfer function to generate the neuron's output. 

 

𝑧𝑗 = 𝑓(∑(𝑤𝑢 + 𝑏)𝑖

𝑁𝐼

𝑖=1

) (1) 

 

where f is the transfer function, NI is the number of inputs, w represents the connection weights, b is the bias, 

and ui and z are the i-th input and j-th output of the ANN, respectively. The hyperbolic tangent sigmoid transfer 
function is the most widely used, as it limits the output value of the neurons between -1 and 1, as shown in 

equation (2). 
 

tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (2) 

 

The multi-layer feedforward (MLF) network has seen extensive use in a variety of applications. MLF networks 

consist of two or more layers: an input layer, one or more hidden layers, and an output layer. The number of 
neurons in the input and output layers corresponds to the number of input and output parameters, respectively. 

The number of neurons in the hidden layers is optimized during the training process. During training, a learning 
algorithm adjusts the connection weights based on the data for the computational task. Among various learning 

rules, backpropagation is the most commonly used. In this method, the differences between each ANN output 

and its desired value are calculated, and the weights are adjusted using error terms. The primary challenge in 
ANN modeling is to determine a set of optimized weights that minimize the prediction error to an acceptable level. 

 
Parameters for the ANN 
 

The first step in designing a neural network is selecting appropriate inputs. These input parameters must 
theoretically have a relationship with the outputs. Since Pc, Tc, ∆Hf, and Tm are topology-dependent, molecular 

weight and molecular volume from COSMO were considered as inputs. Additionally, because the ground state 3D 
structure of a molecule is influenced by intramolecular interactions, the full COSMO-SAC sigma profile was used 
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as an input for the ANN. Before using the input parameters for training or testing, they were all normalized to a 

scale of -1 to 1. 

 
The COSMO-SAC sigma profile is an area-weighted energy profile for each molecule. This profile is a file containing 

the sigma profile, which represents the probability of a segment having a specific charge density (σ), weighted by 
the total surface area of the molecule. The sigma profiles were generated from single 3D molecular structures 

through quantum-mechanical calculations. 
 

First, the equilibrium molecular geometry of each molecule was obtained by minimizing its molecular energy. From 

this equilibrium geometry, the volume of the cavity (VCOSMO), the area of the cavity (ACOSMO), and the total 
number of segments (COSMO segments) were estimated using solvation calculations in a perfect conductor. These 

calculations were performed with the quantum chemistry package developed by Accelrys Materials Studio v4.3. 
The detailed settings for DMol3 (using the GGA/VWN-BP functional) followed the same parameters used by Mullins 

et al. (2006). Finally, the COSMO data were utilized to derive the COSMO-SAC sigma profile based on equations 

previously reported by Mullins et al. (2006). 
 

RESULTS AND DISCUSSION 

 
Artificial neural network 
 

A hyperbolic tangent sigmoid transfer function was used in the hidden layer, and a linear transfer function was 

employed in the output layer for all ANN calculations. The ANN algorithms were implemented in the MATLAB 
programming language. Optimizing an ANN in MATLAB presents a significant challenge due to the local 

optimization of parameters. Literature shows that each re-optimization of the ANN can result in different values 
for parameters such as biases and weights. To address this issue, a global optimization approach was implemented 

using a genetic algorithm initialized with local optimizations. Experimental data for Tc, ∆Hf, and Tm were sourced 

from Diadem Public 1.2 (2000). 
 

When using an ANN, it is standard practice to split the collected data into two groups: the training set and the 
test set. The training set is used to train the network and evaluate its performance. In this study, 80% of the total 

1400 data points were randomly selected for training the network, while the remaining 20% were used for 

validating the developed model (test set). 
 

The accuracy of the developed predictive method was assessed using the root mean square error (RMSE), 
calculated as follows: 

 

RMSE = √
1

𝑛𝐴𝑁𝑁
∑ (𝑙𝑛𝑦𝑖

𝑒𝑥𝑝
− 𝑙𝑛𝑦𝑖

𝑐𝑎𝑙)
2

𝑛𝐴𝑁𝑁

𝑖=1

 (3) 

where ln yi is the natural log of the property, exp represents the experimental data, cal denotes the ANN-calculated 
values, and nANN is the number of data points used for training or testing the ANN model. 

The architecture of an ANN is defined by the number of layers, the number of neurons in each layer, the activation 

function of each layer, and the training algorithm. In this study, various neural network topologies were tested 
using a trial-and-error procedure, as shown in Table 1. 

The final selected structure of the implemented ANN for Pc, Tc, ∆Hf, and Tm consisted of 12 neurons. This 
architecture was chosen based on the low deviations of the predicted values for the test set, as calculated by 
RMSE. 
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Table 1: Root means square error for the data test set using various numbers of neurons in one hidden layer. 

in-layer Pc Tc ∆Hf Tm 

5 6.6 29.4 5.0 41.3 

6 6.9 28.5 5.3 38.1 

7 5.4 30.0 4.8 38.0 

8 7.3 26.5 4.8 37.6 

9 7.5 28.6 4.6 37.1 

10 5.2 25.0 5.1 35.1 

12 6.0 27.3 5.1 31.8 

15 7.3 27.9 4.5 41.6 

 
For the Pc testing data, 280 compounds were considered with the highest and lowest values of 103 and 10.7 bar 

for the Bromine and 1,2-benzene dicarboxylic acid, dinonyl ester, respectively. For the Tc testing data, the highest 
and lowest values of 1290 and 191 K for the phosphorus sulfide and methane, respectively. For the testing data 

of the ∆Hf, the highest and lowest values of 97.9 and 0.5 kJ/mol for the pentaerythritol tetranitrate and pentane, 

2,2,3,4-tetramethyl-, respectively. For the Tm test data, the highest and lowest values of 625.15 and 13.95 K for 
melamine and hydrogen, respectively. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig. 1: Property predicted by ANN versus experimental value for test data for the critical pressure (a). critical temperature 

(b), enthalpy of fusion (c), and melting temperature (d). 

 
Furthermore, Fig. 1 shows that the ANN-Sigma profile model can reproduce the trend of the values for the 

experimental properties. But there were high deviations at high values of enthalpy of fusion suggesting that ∆Hf 
is the most challenging property to predict.  
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CONCLUSIONS 

 

This study presents predictions for four challenging properties of pure chemical compounds: critical pressure, 
critical temperature, enthalpy of fusion, and melting temperature. An artificial neural network model was 

developed to predict these properties using inputs from the COSMO-SAC model, molecular weight, and the number 
of chemical bonds. Among these properties, the enthalpy of fusion proved to be the most difficult to predict. The 

study confirms that the sigma profile serves as a useful descriptor in this context. 
 

ACKNOWLEDGEMENTS 

 
The authors are grateful to CarbonIP Technologies for funding this project. 

 
REFERENCES 

 

Ambrose, D. & Ghiasse, N.B. (1987) Vapor pressures and critical temperatures and critical pressures of some 
alkanoic acids: C1 to C10. J. Chem. Thermodyn., 19, 505–519. 

 
Bergstrom, C.A., Norinder, U., Luthman, K. & Artursson, P. (2003). Molecular descriptors influencing melting point 

and their role in the classification of solid drugs. J. Chem. Inf. Comput. Sci., 43, 1177-1185. 
 

Diadem Public 1.2. (2000). The DIPPR Information and Data Evaluation Manager. 

 
Dyekjaer, J.D. & Jonsdottir, S.O. (2003). QSPR models based on molecular mechanics and quantum chemical 

calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers. Ind. Eng. Chem. Res., 42, 
4241-4259. 

 

Gharagheizi, F. & Salehi, G.R. (2011). Prediction of enthalpy of fusion of pure compounds using an Artificial Neural 
Network-Group Contribution method. Thermochim. Acta, 521, 37-40. 

 
Goodarzi, M., Chen, T. & Freitas, M.P. (2010). QSPR predictions of heat of fusion of organic compounds using 

Bayesian regularized artificial neural networks. Chemometr. Intell. Lab., 104, 2010, 260-264. 

 
Hughes, L.D., Palmer, D.S., Nigsch, F. & Mitchell, J.B.O. (2008). Why are some properties more difficult to predict 

than others? A study of QSPR models of solubility, melting point, and Log P. J. Chem. Inf. Model., 48, 220-232. 
 

Joback, K.G. & Reid, R.C. (1987). Estimation of pure component properties from group contributions. Chem. Eng. 
Commun., 57, 233–243. 

 

Karthikeyan, M., Glen, R.C. & Bender, A. (2005). General melting point prediction based on a diverse compound 
data set and artificial neural networks. J. Chem. Inf. Model., 45, 581-590. 

 
Katritzky, A.R., Jain, R., Lomaka, A., Petrukhin, R., Maran, U. & Karelson, M. (2001). Perspective on the relationship 

between melting points and chemical structure. Cryst. Growth Des., 1, 261-265. 

 
Kudchadker, A.P. & Zwolinski, B.J. (1966). Vapor pressures and boiling points of normal alkanes C21 to C100. J. 
Chem. Eng. Data, 11, 253–255. 
 

Lin, S.T. & Sandler, S.I. (2002). A priori phase equilibrium prediction from a segment contribution solvation model. 
Ind. Eng. Chem. Res., 41, 899-913. 

 



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 14 (3), 101-107 (Julio/Septiembre, 2023) / Alvarez & Alvarez 

 

107 

 

Lydersen, A.L. (1955). Estimation of Critical Properties of Organic Compounds, Eng. Exp. Stn. Rep. 3; University 

of Wisconsin College Engineering: Madison, WI. 

 
Marrero, J. & Gani, R. (2001). Group-contribution based estimation of pure component properties. Fluid Phase 
Equilibr., 183–184, 183-208. 
 

Mullins, E., Oldland, R., Liu, Y.A., Wang, S., Sandler, S.I., Chen, C.C., et al. (2006). Sigma-profile database for 
using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 45, 4389-4415. 

 

Puri, S, Chickos, J.S. & Welsh, W.J. (2003). Three-dimensional quantitative structure-property relationship (3D-
QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpy of 

vaporization. J. Chem. Inf. Comp. Sci., 43, 55-62. 
 

Wilson, G.M. & Jasperson, L. V. (1996) Critical constants Tc and Pc, estimation based on zero, first and second 
order methods, AIChE Spring National Meeting, 25-29 February, New Orleans, LA-USA. 
 

Thodos, G. (1955). Critical constants of saturated aliphatic hydrocarbons. AIChE J., 1, 168–173. 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 14 (3), 101-107 (Julio/Septiembre, 2023) / Alvarez & Alvarez 

 

108 

 

 

 

 
 

 
 

 
 

 

 


